Opportunistic Disease Surveillance in Culled Wild Fallow Deer (*Dama dama*)

Nigel Gillan

District Veterinarian Central Tablelands Local Land Services - Mudgee

Q: Is the spread of livestock or human diseases a problem associated with wild deer in NSW?

Q: Is the spread of livestock or human diseases a problem associated with wild deer in NSW?

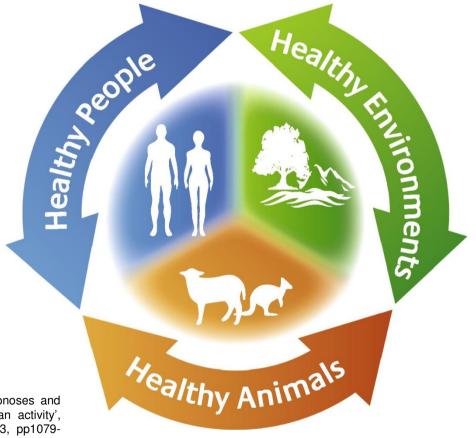
"Potential spread of disease" listed by NSW DPI as an impact

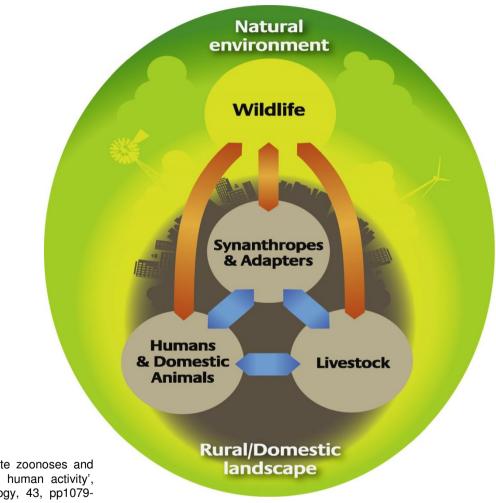
"Spread of stock disease" identified as a deer-related problem by 9% of respondents in a survey of government land managers (Moriarty, 2004)

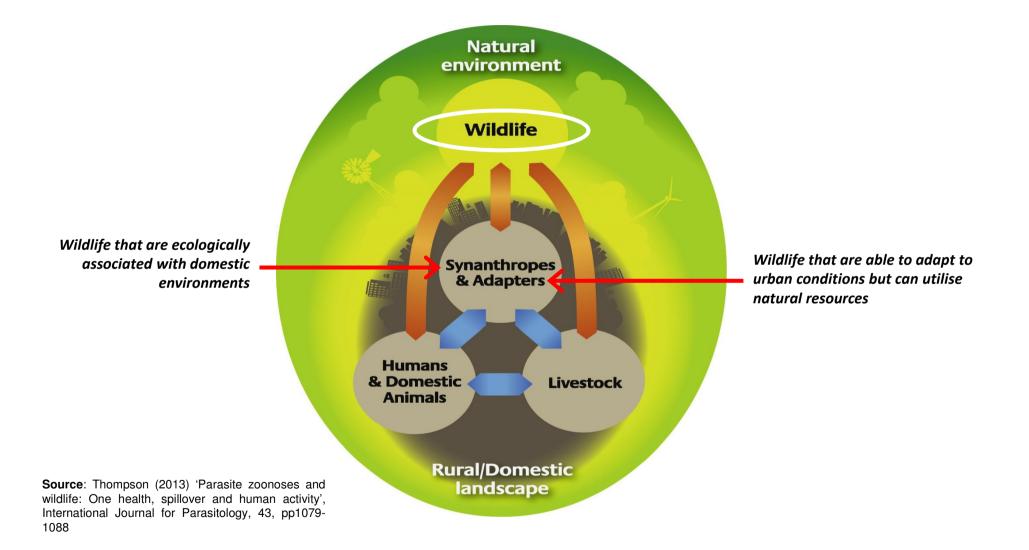
Q: Is the spread of livestock or human diseases a problem associated with wild deer in NSW?

"Potential spread of disease" listed by NSW DPI as an impact "Spread of stock disease" ide Sined as a deer-related problem by 90 on respondents in a survey of government land managers (Moriarty, 2004)

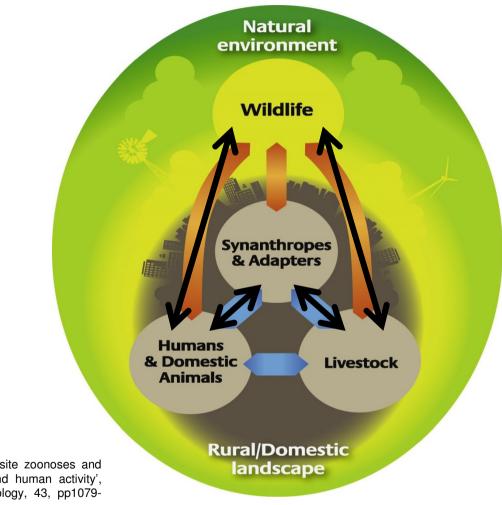
Aim


- To assess the biosecurity risk posed by a population of fallow deer near Mudgee, NSW, with respect to:
 - 1. Livestock diseases
 - 2. Zoonotic diseases


"One Health"


"A collaborative, multisectoral, and trans-disciplinary approach working at the local, regional, national, and global levels — with the goal of achieving optimal health outcomes recognizing the interconnection between people, animals, plants, and their shared environment."

(Centers for Disease Control and Prevention)


The One Health Triad

Wildlife – Biosecurity Risk

- The majority of recently emerging infectious diseases affecting humans are of animal origin (70 – 75%, FAO).
 - E.g. Brucellosis in QLD and NSW.
- Increasing interaction between wildlife, livestock, and human populations increases the risk of disease transmission.

– E.g. Hendra virus.

What is still to be learned?

• The role of wildlife in disease ecology for specific diseases and how these spread to livestock and humans and vice versa, including key disease reservoirs and transmission vectors.

Potential Disease Risks

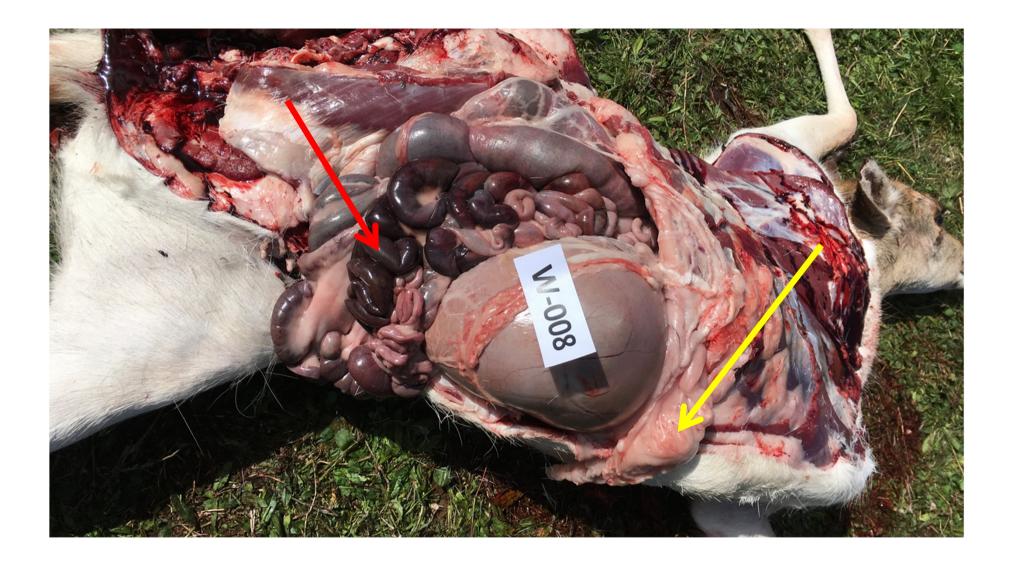
- A large number of livestock and human pathogens can infect and be transmitted by deer.
- For this study, the following were considered:
 - 1. Johne's Disease Mycobacterium avium subspecies paratuberculosis
 - **2. Pestivirus** Bovine Viral Diarrhoea Virus
 - **3.** Leptospirosis Leptospira interrogans serovars hardjo and pomona
 - 4. **Q fever** *Coxiella burnetii*
 - **5.** Cattle tick Boophilus microplus
 - 6. Footrot Dichelobacter nodosus

Method

Method

- 1. General observations recorded (age, sex, condition)
- 2. Visual inspection, necropsy (external and internal)
 - Cattle tick
 - Footrot
 - Obvious gross pathology

3. Sample collection


- <u>Pericardial fluid</u> \rightarrow *L.hardjo*, *L.pomona*, and Q fever serology
- <u>Faeces</u> → HT-J PCR
- <u>Various tissue samples</u> (if gross pathology present) \rightarrow Histopathology
- (Spleen \rightarrow ?Q fever PCR)
- (Ear notch/tail hairs \rightarrow ?Pestivirus antigen)

Method

Results

- External examination
 - All animals in good body condition
 - No evidence of cattle tick or footrot
 - No obvious external gross pathology
- Basic necropsy
 - 1 animal with severely haemorrhage in a segment of small intestine (?torsion)
 - 1 animal with a single abdominal cyst appearance consistent with a cestode cyst (*Taenia hydatigena* or *Cysticercus bovis*)

Results

Pathogen/ Test	Samples Tested	Samples Positive
Mycobacterium avium subspecies paratuberculosis (Johne's disease) HT-J PCR	73	0
Leptospira interrogans serovar Pomona MAT	42	0
Leptospira interrogans serovar Hardjo MAT	42	0
Bovine Viral Diarrhoea Virus (BVDV) AGID	42	5 (11.9%)
Coxiella burnetii (Q fever) CFT	37	0

Discussion

- In general, sampling logistics worked well.
 - Helicopter winching VS vehicle access (+ and –)
- Good body condition highlighted grazing pressure.
- Insufficient sample size for statistically significant results, but meaningful nonetheless.

Discussion

 Gross and laboratory findings suggest this deer population does not pose a biosecurity risk as a reservoir of: Johne's disease, Q fever, *L.pomona, L.hardjo*, cattle tick, or footrot.

Discussion

- 11.9% BVDV seroprevalence most likely represents exposure from cattle (P Kirkland, pers. comm.).
 - Disease transmission happens both directions not just *from* wildlife.
 - Biosecurity risk to a naïve cattle herd?
 - Indicates sufficiently close contact for transmission of other diseases.

Conclusion

- Disease prevalence data from deer populations is a necessary component of assessing the nature and scale of the biosecurity risk they pose, but is currently lacking.
- The population in this study does not appear to pose a significant biosecurity threat (for the diseases tested).
- In this study, BVDV results suggest sufficiently close contact between cattle and deer for disease transmission – i.e. they are a potential reservoir for infectious disease "spillover" events.
- Further research:
 - Level of contact between livestock and deer.
 - Prevalence studies of other populations (where populations are distinct, results cannot be extrapolated).

Acknowledgements

The landowners and farm staff involved in this project for their cooperation and practical assistance; Brendon Stubbs, Brett Littler, Clare Hamilton, Julie Reynolds, and Kate Peffer for their invaluable and willing assistance with sample collection; Dave Forsyth and David Smith, for sharing their knowledge of deer biology and behaviour; the staff of EMAI, for their expert advice on laboratory testing; Richard Whittington, for his helpful comments during project planning; Peter Kirkland for his comments on BVDV serology results; and Bruce Jackson and Jack van Wijk, for use of their unpublished material.

